New coronavirus variants are rising throughout the globe: The whole lot we all know

The coronavirus SARS-CoV-2 has continuously advanced because it was first detected in people over a 12 months in the past. Viruses replicate exceedingly quick, and every time they do, there is a small probability they mutate. That is par for the course, in case you’re a virus

However in the previous few weeks, scientists have been investigating SARS-CoV-2 variants with a handful of mutations arising a lot sooner than anticipated. Usually, we would anticipate to see one to 2 largely inconsequential genetic modifications within the coronavirus each few months. New variants are rising with a constellation of mutations, all on the identical time.

In December 2020, the UK introduced a variant of coronavirus, and two different variants had been later detected in South Africa and Brazil. There may be, in the meanwhile, no purpose to concern these variants or how the coronavirus is mutating — scientists and the World Well being Group recommend that our present protecting measures of social distancing and masking up work simply as nicely towards them. Nevertheless, scientists are carefully monitoring and evaluating them as a result of they might worsen the pandemic if they’re extra transmissible or can evade our immune system and vaccines.

Epidemiologists, virologists and immunologists at the moment are tasked with understanding how these mutations within the new variants could change the virus and the way our our bodies reply to them. Mutations may change SARS-CoV-2 in such a approach that it could even have the ability to evade the immune response generated vaccines. Preliminary analysis reveals present vaccines ought to have the ability to cope with the three most regarding variants, however information continues to roll in. On Sunday, South Africa quickly halted the usage of the AstraZeneca-Oxford vaccine after a small medical trial discovered it did not defend shot recipients from a fast-moving variant of the virus first found within the nation. 

Scientists can see the virus evolving in actual time and are in a race to explain how this evolution would possibly have an effect on our immunity and, down the road, therapies and vaccines. Right here, we’re sharing the whole lot we learn about COVID-19 variants and the assorted esoteric methods scientists focus on mutations and evolution.

Now playing:
Watch this:

When will I get my COVID-19 vaccine?


How does the coronavirus mutate?

The coronavirus is an RNA virus, which means its complete genetic sequence, or genome, is a single-stranded template (humans and other mammals, contrast, use double-stranded DNA). The template of SARS-CoV-2 is made up of four bases — denoted the letters a, c, u and g — in a specific sequence, about 30,000 letters long.

The template provides instructions on how to build all the proteins that make a new coronavirus particle. To replicate, SARS-CoV-2 needs to take over a host cell and use it as a factory, hijacking the machinery within. Once it sneaks into a cell, it needs to read the RNA template. 

Critical to this process is an enzyme known as an RNA-dependent RNA polymerase, or RdRp. It has one job, and it’s terrible at it. “This is an enzyme that makes a huge amount of mistakes when replicating,” says Roger Frutos, a molecular microbiologist at the French Agricultural Research Centre for International Development, or CIRAD. The RdRp introduces errors during replication, producing new viruses with slightly different templates. Changes in the template are known as mutations.

Mutations often have little effect on a virus, but sometimes they change the template so much they cause changes in the virus’ physical structure. “A mutant doesn’t mean it’s like 10 times scarier or 10 times deadlier,” says Tyler Starr, a computational biologist at the Fred Hutchinson Cancer Research Center. “Mutations have incremental effects.”

This could be a bad thing for SARS-CoV-2, creating a useless zombie virus. Sometimes, it might confer an advantage, like allowing the virus to bind more tightly to a host cell or helping it evade the immune response.

Scientists and researchers spot mutations sequencing SARS-CoV-2 isolated from patients, looking at the entire 30,000 letters of its genome. They compare this with the earliest viruses on record, those detected in Wuhan, China, patients back in December 2019, and see how they’ve changed. “We never see viruses now that look exactly like what was in Wuhan,” says Stuart Turville, an immunovirologist at the Kir Institute in Australia.

If researchers see that a mutation is becoming more prevalent in a population, there’s a chance it may have changed the characteristics of SARS-CoV-2. 

What are the coronavirus variants?

Any mutations to the coronavirus genome results in variants of the virus, but some are more concerning than others. In late 2020, three variants were identified with mutations that may make SARS-CoV-2 more transmissible or, in the case of one variant, more deadly

The variants are described a number of names, which makes things a little confusing, but scientists refer to them their lineage, giving them a letter-based descriptor based on their ancestry. They are: 

These will not be the last variants of SARS-CoV-2 that arise, and scientists continue to track changes in the genome. Any changes can be useful for genomic epidemiologists to assess transmission dynamics and patterns, in turn helping inform public health units to alter their response to any emerging threats. “We are watching all the time,” says Catherine Bennett, chair in epidemiology at Deakin University in Australia.

But why are these three variants of particular concern? They share common characteristics that early analysis suggests may enable them to spread more easily or evade the immune response. This seems to result from, at least partially, how these mutants change the structure of the SARS-CoV-2 spike protein, which enables the virus to hijack cells and turn them into factories.


Could coronavirus variants change the efficacy of our vaccines? Scientists are trying to figure that out.

Sarah Tew/CNET

How do mutations cause structural changes? 

Each SARS-CoV-2 particle is covered with spikes. Infiltration of a cell requires the club-like projections to lock onto a protein on the surface of a human cell known as ACE2, which facilitates viral entry. 

But the viral protrusions are also recognized the human immune system. When immune cells detect the SARS-CoV-2 spike, they begin pumping out antibodies to prevent it from locking on to ACE2, or send other cells in to destroy the virus. Antibodies also attach to the spike and can effectively prevent it from attaching to a cell. This puts the spike under extreme evolutionary pressure. Mutations that change the spike and help it evade immune cells or antibodies or lock onto ACE2 more strongly can provide a survival advantage.

The variants listed above all share mutations in a region of the spike known as the receptor binding domain, which directly contacts ACE2. If mutations cause structural changes in the RBD, it might bind to ACE2 differently and could, for example, prevent the immune system from recognizing it as dangerous. 

Interlude: Amino acids

Here’s where things get a little confusing, but it’s important to understand how scientists denote specific mutations and why you’re seeing all these numbers and letters flying around.

Remember that each RNA genome (the template) contains four molecular bases denoted the letters a, c, u and g. When this template is read, every three-letter combination or “codon” (GAU, for instance) corresponds to an amino acid. A chain of amino acids becomes a protein.

But here’s the confusing bit: Amino acids are also denoted a single-letter code, unrelated to the RNA template letters. The amino acid alanine, for instance, is A. Aspartic acid is D. Glycine is G. 

Why is this important? Because scientists discuss and study coronavirus mutations at the amino acid level. 

For example, we’ve already seen one SARS-CoV-2 variant arise and come to dominate across the world. 

Sometime in early 2020, the coronavirus picked up a mutation that resulted in an increase in infectivity. A mutation in the RNA template flipped an “a” to a “g,” which caused a different amino acid to form in the RBD of the spike. This change was beneficial for the virus, and now it’s the dominant form we see across the world.

The mutation is known as D614G. This notation, letter-number-letter, corresponds to a change in the amino acid at position 614, from aspartic acid (D) to glycine (G). 

Confusing? Definitely. Important? Absolutely. This naming convention is important to understand important mutations in the three new COVID-19 variants.


Strengthening lockdowns in the UK has helped curb the spread of the variant, B.1.1.7

Sarah Tew/CNET

Which coronavirus mutations concern scientists most?

There are a number of mutations in all three variants across the RNA genome, but let’s focus on the spike here. B.1.1.7 has eight mutations in its spike, B.1.351 has seven and P.1 has 10. Not all of these mutations are the same, but some overlap — that is, the virus has evolved similar mutations in different locations across the world, a process known as “convergent evolution.” 

There are three mutations, all found in the RBD of the spike, which may affect the virus or how our antibodies respond to an infection:

Scientists are only just beginning to understand how these individual changes may benefit SARS-CoV-2 and if they’re increasing its infectivity and transmissibility or making them more prone to evading the immune response. There’s emerging evidence that, alone, they may not be significant changes — but when found in combination with other mutations, they may facilitate more worrying differences from “original” SARS-CoV-2. 

N501Y is found in all variants and is one of the mutations scientists are most interested in.

The change from an asparagine (N) to a tyrosine (Y) has been shown to increase SARS-CoV-2’s ability to bind to ACE2 and, in mice, increase its infectivity. It’s currently unknown whether this one change would elicit any changes in the mortality or morbidity of COVID-19. However, the change does not seem to impact the ability for the Pfizer/BioNTech vaccine to stimulate antibodies, according to preliminary research published on preprint server bioRxiv. That’s good news.

In addition to N501Y, the B.1.351 and the P.1 variants have two more mutations: E484K and K417N/T, both of which change how sensitive the virus is to antibodies. These changes are slightly more concerning.

The two mutations are in regions of the RBD that antibodies can bind to. Researchers are concerned about E484K in particular and mutations at this site can reduce the neutralizing ability of antibodies more than 10 times. This could have the greatest impact on generating immunity, according to a preprint paper published on Jan. 4. Another preprint, published on Jan. 26, points to E484K as a key mutation in diminishing antibody activity against COVID-19. Worryingly, the mutation appears in 100% of cases infected with the P.1 variant — and scientists are concerned it’s allowing for a significant number of reinfections in Brazil. 

The amino acid change at 417 is also interesting. In the South African B.1.351 variant, it’s K417N. In the P.1 variant it’s K417T. The amino acid change is different, but it appears to result in a similar effect — improving evasion from antibodies. Preliminary studies reveal that position K417 is an important target of neutralizing antibodies, too, suggesting that both mutations could help the virus evade vaccine-mediated and naturally acquired immunity.

The UK government has also seen the E484K mutation in at least 43 cases, according to a recent technical briefing and the BBC.

Surveilling variants

These are merely three of the many mutations scientists are finding in the new variants — how they all fit together in reality is much more complicated, and many more mutations that change SARS-CoV-2 are waiting to be discovered. For instance, a paper published on Jan. 28 in Cell discusses the N439K variant and its ability to evade antibodies.

Fortunately, scientists can get ahead of these variants studying mutations that may occur in SARS-CoV-2. This is central to work performed Starr and some of his colleagues at the Fred Hutchinson Cancer Research Center. “We’ve been generating these maps where we just survey all the possible mutations that could occur in the RBD,” Starr says.

When a new variant arises, other researchers can look to these maps and see how the mutation affects the biochemical properties of the virus. Does it bind better? Worse? Is it more likely to evade the immune system? Starr explains this work has allowed for mapping how mutations might avoid treatments, like those used Regeneron or Eli Lilly and can inform surveillance and response to emerging variants. 


Maps like these, produced the Bloom lab at the Fred Hutchinson Cancer Research Center, guide research on mutations. At significant sites in the RBD, the team analyzes how mutants change the binding affinity. Blue is increased affinity, red is decreased. The N501Y mutant is a deep blue, showing how this mutant has increased binding affinity to ACE2. 

Bloom Lab (

Should you be worried about coronavirus variants?

Presently, there’s not enough evidence to suggest the variants are causing more significant mortality or more severe disease — which means public health advice is largely unchanged. Wearing masks, social distancing and good hand and respiratory hygiene are the best way to prevent the spread of the disease. The coronavirus has not mutated to overcome these measures.

A more pressing question is how the variants and their mutations could affect vaccines and treatments and whether they’ll increase the rate of reinfection. Vaccines stimulate immunity showing the body a harmless version of the virus, which can produce antibodies that roam our inner halls looking for invaders. These antibodies may not be adept at catching and neutralizing variants, as explained above — but researchers don’t have a great handle on the data at present.

Even so, vaccine manufacturers have begun to plan for variants that negatively affect the immune response. A report in Science on Jan. 26 highlights Moderna’s efforts to look ahead and potentially change the formulation of their mRNA vaccine and provide “booster” shots that could protect against new variants that may arise. 

On Jan. 28, biotech firm Novavax released news of results from late-stage clinical trials of its own vaccine candidate. The trial was conducted on patients in both the UK and South Africa, with mixed results. In the UK, Novavax claims its vaccine had around 89.3% efficacy, but in South Africa, where the more evasive variant is circulating, this efficacy dropped to 60%. This result is concerning and makes an urgent case to evaluate our current vaccines against the newly emerged variants.

Additionally, if the variants infect someone who has previously been infected COVID-19, there’s a chance the immune system will not mount an adequate response and block infection. There’s limited data on this, though the P.1 variant has been detected in a case of reinfection in Brazil. The patient was exposed to an earlier variant of SARS-CoV-2, but then acquired P.1 and scientists believe they may have gone through a second period where they were able to transmit the disease again. More work is required to fully understand this phenomenon. 

Ultimately, COVID-19 continues to spread across the globe and more new infections means more opportunities for SARS-CoV-2 to evolve. The virus can’t evolve without us — indeed, it can’t survive without us. The simplest way to prevent new variants from emerging is preventing the virus from spreading at all. Our efforts will need to be focused on speeding up the vaccine rollout across the globe and continuing to practice the distancing and hygiene measures we’re already adept at. 

The information contained in this article is for educational and informational purposes only and is not intended as health or medical advice. Always consult a physician or other qualified health provider regarding any questions you may have about a medical condition or health objectives.

Supply hyperlink